If it's not what You are looking for type in the equation solver your own equation and let us solve it.
X^2+3X-19=29
We move all terms to the left:
X^2+3X-19-(29)=0
We add all the numbers together, and all the variables
X^2+3X-48=0
a = 1; b = 3; c = -48;
Δ = b2-4ac
Δ = 32-4·1·(-48)
Δ = 201
The delta value is higher than zero, so the equation has two solutions
We use following formulas to calculate our solutions:$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}$$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}$$X_{1}=\frac{-b-\sqrt{\Delta}}{2a}=\frac{-(3)-\sqrt{201}}{2*1}=\frac{-3-\sqrt{201}}{2} $$X_{2}=\frac{-b+\sqrt{\Delta}}{2a}=\frac{-(3)+\sqrt{201}}{2*1}=\frac{-3+\sqrt{201}}{2} $
| -2(2x+1=2(-3x+1) | | x+5/7=3x+3/4 | | 7z-23=-47+z | | 5b-11-3b=11 | | -21+3g=20+g | | 8m+3m=44 | | 9-(m+5)=3(6m-5)m=1 | | 3x2–5x–6=0 | | 180=10+5x+2x | | -3+8n=3(n+1) | | 1/2*x+10=7 | | 4a+7=10+4 | | 9+2y/7=y | | -1/2v-4/5=-4/7 | | 8q-4q-6q+3=0 | | |12-4x|=11 | | |8y+4|=2|y−1| | | 1/2x+10=7 | | 5+3x-x=7+8x | | 4w=2w-8 | | 14=(6+z)/2 | | 8a+2=22+3a | | 36=(10-2x)2 | | x+(x*10)=50 | | X=1/2x-5 | | 7=z=11 | | 10/7=5/x+2 | | 3.1=20.6-7u | | 2/3x=10-x | | 5x+2×-3=-3×+10× | | -10=x+3/2 | | 2(2×+1)=2(-3x+1) |